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Visualizing Nuclear Scission Through a Multifield Extension of

Topological Analysis

David Duke, Member, IEEE, Hamish Carr, Member, IEEE, Aaron Knoll, Nicolas Schunck, Hai Ah Nam, and Andrzej Staszczak

Fig. 1. Scission point: A single plutonium nucleus (left) breaks into two fragments (right). Each image shows the iso-interval slabs
within the 3D domain, and the abstract structure of the underlying Joint Contour Net.

Abstract— In nuclear science, density functional theory (DFT) is a powerful tool to model the complex interactions within the atomic
nucleus, and is the primary theoretical approach used by physicists seeking a better understanding of fission. However DFT simula-
tions result in complex multivariate datasets in which it is difficult to locate the crucial ‘scission’ point at which one nucleus fragments
into two, and to identify the precursors to scission. The Joint Contour Net (JCN) has recently been proposed as a new data structure
for the topological analysis of multivariate scalar fields, analogous to the contour tree for univariate fields. This paper reports the
analysis of DFT simulations using the JCN, the first application of the JCN technique to real data. It makes three contributions to
visualization: (i) a set of practical methods for visualizing the JCN, (ii) new insight into the detection of nuclear scission, and (iii) an
analysis of aesthetic criteria to drive further work on representing the JCN.

Index Terms—Topology, Scalar Fields, Multifields

1 INTRODUCTION

Problems in science, engineering and medicine rarely involve just one
property of a system. Simulations of combustion, turbulence, seis-
mic movements, meteorology, astrophysics, and molecular physics,
all compute multiple properties simultaneously, such as temperature,
pressure, velocity, vorticity, shear, combustion rate, and so on. To
date, scientific visualization for such data has focused on techniques
for representing individual properties. Visual exploration of multiple
properties requires careful use of methods such as probing, glyphing,
or multidimensional transfer functions. All of these approaches are ad
hoc, relying on careful study and exploration to piece together a global
understanding of the relationships from local, fragmented, models.

In physics, this problem is illustrated by many-body systems such as
molecules, atoms or nuclei where the system as a whole is the product
of very complex interactions among many constituents, the properties
of which may not be very easily isolated. In this paper, we focus on
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nuclear fission, the process by which an atomic nucleus splits in two
(or more) fragments. Although it was discovered more than 70 years
ago, physicists are still working on a comprehensive description of
this very complex phenomena rooted in the theory of the strong inter-
action rather than phenomenological models. Such a predictive power
is needed for further insight in the formation of elements in the uni-
verse, but also to answer pressing societal questions related to energy
production or stockpile stewardship. A particularly challenging aspect
in the theory of fission is the ability to identify accurately, in a contin-
uous N−dimensional manifold, the points where the original nucleus
ceases to be whole, and where it is justified to introduce two sepa-
rate density distributions corresponding to the fission fragments. This
identification is conventionally done manually and relies on the physi-
cists’ intuition rather than clear mathematical arguments. By nature,
however, this problem is an excellent candidate for multifield analysis.

Recent work [10] sets out a clear mathematical basis for multi-
field analysis: the Joint Contour Net (JCN). JCNs generalise the Con-
tour Tree (and Reeb Graph) from one to an arbitrary number of scalar
properties. Underlying this approach is a key assumption: that, by
visualizing the JCN it will be possible to gain global insight into the
relationship between the fields, and/or to identify important changes
in the topological structure of the full system in terms of feature in the
JCN. This has been demonstrated on small synthetic datasets, but not
yet on real data linked to a specific scientific problem.

This paper makes two principal contributions:

1. We apply graph visualization tools to the JCN to analyse simu-
lation data from nuclear physics, leading to new insight into the
nuclear fission process, and a new general method for the future.

2. We demonstrate the utility of the JCN to real data, and explore
the relationship between JCN analysis of multifields and contour
tree analysis of single scalar fields.



The remainder of the paper is structured as follows. Section 2 de-
scribes nuclear density functional theory and its treatment of nuclear
fission, then concludes with the key domain question addressed in this
paper, namely finding the scission point in simulations of nuclear fis-
sion. These datasets are multivariate, and Sections 3 through 5 set out
relevant formalisms and prior work including the JCN. Our visualiza-
tion tools are described in Section 6: these include implementation of
the JCN, and methods for drawing it. The subsequent two sections, 7
and 8, present our analyses of two substantial datasets. The first study,
a simulation of fermium fission, serves to calibrate our approach. The
second dataset, modeling fission in the plutonium nucleus, is more
challenging, and our analysis contributes new insight into physicists’
understanding of this system. Section 9 then reviews the contributions,
and considers future research in this area.

2 NUCLEAR FISSION IN DENSITY FUNCTIONAL THEORY

Early models of fission were based on an empirical liquid-drop picture
of the nucleus: fission occurs when one “stretches” the drop up to the
point where it breaks in two [5]. Modern approaches aim at deriv-
ing an understanding of the fission process from the nucleon-nucleon
interactions that make atomic nuclei possible. In this context, the ma-
jor theoretical approach is nuclear Density Functional Theory (DFT)
[3]. Its central assumption is that the complex many-body interactions
of protons and neutrons within the nucleus can be hierarchized. In
first approximation, everything happens as if all nucleons were mov-
ing independently of one another in some average quantum potential,
the nuclear mean-field, which is computed, e.g., by convolving an ef-
fective two-body interaction with the density of nucleons. A mecha-
nism named spontaneous symmetry breaking is invoked to deform the
mean-field, introducing a first class of correlations in what would be
otherwise a pure independent particle model. Beyond this first order
approximation, corrections are required to account for quantum fluctu-
ations but the mean-field approximation alone is surprisingly success-
ful: it typically accounts for 99.9% of the atomic mass of elements, see
for example [21, 22]. The DFT approach has three major advantages
over its competitors: (i) it provides a simple yet rigorous framework
based only on an interaction between nucleons, (ii) it only depends on
a handful of free parameters, and (iii) it is the only computationally
tractable approach of the structure of heavy nuclei.

Because fission involves ‘stretching’ the nucleus, the DFT treat-
ment of the problem begins with identifying the relevant deformation
degrees of freedom q of the mean-field. A realistic description of fis-
sion involves at least N ≥ 4 degrees of freedom such as elongation,
triaxiality, mass asymmetry, the degree of necking, etc. [32, 36]. The
list of degrees of freedom defines what is called the collective space.
The next task is to take a (not necessarily uniform) sample grid of
this N-dimensional collective space and compute the total energy E
at each point of this grid. As the dimensionality N of the collective
space increases, the number of points may quickly become very large:
high-performance computing is needed. The scalar field E(q1, . . . ,qN)
defines the potential energy surface (PES). At each point on the PES,
the nucleus is characterized by properties such as the spatial density
of protons and neutrons (scalar field R3 → R), the density of spin of
each type of particles (vector fields R3 → R3), etc. A given set of such
properties is nothing but a particular realization of a multifield.

The PES themselves are the cornerstone of the microscopic theory
of fission. They have some topology with a minimum at small de-
formations, the ground-state of the nucleus, together with secondary
minima, ridges and valleys. Starting from the ground-state and fol-
lowing a path of least energy on the PES, we may observe at some
point a discontinuity with a sharp drop of the energy: this is the scis-
sion point, and it defines the moment where the nucleus fragments and
can not be considered as whole any longer. Often, the identification
of the scission point is obvious, cf. for example the so-called asym-
metric elongated fission path (aEF) of the fermium isotopes in figure 4.
However, there are also many cases where it is much more ambiguous.
In figure 4, the pathway labeled sCF (as symmetric compact fission)
does not show any marked discontinuity. The definition of the scission
point in this case is very arbitrary, yet it is clear that for the collec-

tive variable q ≡ Q20 such that q > 250 b, the system has split in two
fragments. In fact, even in the simplest cases where a discontinuity in
the N-dimensional PES is clearly visible, it is almost always possible
to enlarge the collective space by adding one or a few collective vari-
ables that will remove this discontinuity, and, as a consequence, blur
the identification of the scission point. This local enlargement of the
collective space and its consequence on the scission point is illustrated
in figure 8 for the plutonium isotope.

There are many other cases where rigorous multifield analysis tech-
niques could prove very valuable for nuclear physicists. For example,
the description of neutron-induced fission, e.g. in nuclear reactors re-
quires adding thermal effects to the theory. A theoretically unpleasant
consequence of having to deal with a nuclear temperature is that nu-
cleons tend to be more and more delocalized: densities extend further
outside the nucleus. As a consequence, the definition of the scission
point becomes more and more ambiguous, if not questionable. Apart
from the identification of the scission point itself, perhaps as important
is the detection of the nascent pre-fragments in the fissioning nucleus
[30, 31, 37]. This is the signal that global degrees of freedom asso-
ciated with the whole nucleus may have to be replaced by individual
degrees of freedom for each fragment. Yet, there is currently no sys-
tematic way to perform this switch from global to local degrees of
freedom, and multifield analysis offers an appealing option.

Since the task involves detection of a particular combinatorial event
between distinct objects encoded in a multi-field composed of mul-
tiple scalar fields, this problem is well-suited to topological analysis.
Thus, in order to identify the scission points, we must first discuss the
principles of topological analysis and visualization in the scalar case,
then discuss multifield visualization and in particular the extension of
topological analysis to multifield data.

3 SCALAR TOPOLOGICAL ANALYSIS

In recent years, topological analysis has increasingly been applied
to the analysis, visualization and comprehension of scientific data
sets [7]. Two complementary approaches have been developed -
contour-based analysis [12] and gradient-based analysis [16]. Of
these, contour-based analysis detects objects and their relationships,
while gradient-based analysis also detects regions of common be-
haviour. At the same time, contour-based analysis is computationally
cheaper and simpler than gradient-based analysis: we therefore start
with scalar topological analysis using the contour tree.
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Fig. 2. A small multifield example. In the upper row, the first scalar field,
with contours, slabs and contour tree. In the lower, the second scalar
field, with contours, slabs and contour tree.

3.1 Contour Trees

Given a scalar field f : M ⊂Rm →R over a manifold domain M, a level
set f−1(h) is the pre-image of a given isovalue h, and a contour is a



single connected component of a level set. We note that each contour
is (on standard assumptions) of one dimension lower than the original
data set, because we have restricted it with respect to one variable.

In general, if we contract each contour to a single point, we obtain
a graph called the Reeb graph [25]: when M is homeomorphic to a
disk, the Reeb graph is a tree, and is called the contour tree [6]. more
generally, this is called the Reeb graph when the domain of the func-
tion is a non-simple manifold. For scalar fields of the form an example
of this is shown in Figure 2. In this figure, a small triangulated scalar
field is shown with some contours (on the left), and a heat map to its
right. Note that the contour tree captures the relationship between the
maxima in red, the minima in blue, and the saddle point in the centre.
All extrema are represented as leaf nodes and saddle points as interior
nodes: all other points map to points on edges of the tree. Moreover,
regions bounded by contours map to subsets of the tree, and branches
of the tree therefore represent regions of the data.

The contour tree can be computed in O(NlogN) time for triangu-
lated scalar fields [11], and has been used for feature detection [12],
volume rendering [35], and contour extraction [12].

3.2 Combinatorial Reduction

In computing contour trees and other topological abstractions of data,
the first step is to establish a reduction of the input data to a combina-
torial form, commonly a graph representation, over which algorithms
can operate efficiently. This was initially done by making simplifying
assumptions to fit the formal mathematics, but had the side effect of
making computations more complex. In particular, the function was
assumed to be defined over a triangulated (simplicial) mesh [2] with
no two vertex isovalues identical [17], it is possible to reduce the com-
putation to a combinatorial algorithm over the graph defined by the
edges of the input mesh. Alternately, graphs can be defined directly
from digital image connectivity rules [23].

More recently, Forman’s Discrete Morse Theory [18] replaced gra-
dient computation with a rigorous combinatorial approximation, al-
lowing efficient approximation of the Morse-Smale Complex.

How data is reduced to graphs is therefore a key component of prac-
tical computational topology, and the most recent work in this area
has shown an intimate link between quantization of data and contour
properties. Initially, this research showed a linkage between compu-
tational statistics, geometric representations, and contours [8]. Later
work added the role of the gradient in computing geometric proper-
ties [26], and extended it to improve direct visualisation of continuous
multi-field data through scatterplots [1]. Most recently, histograms
have been shown to compute measures of interval regions: regions
given by equivalence under function value quantisation [13]. This im-
plies that a combinatorial reduction for topological analysis can be
based on contour quantization rather than simplicial reductions.

In summary, contour trees capture large-scale features of a scalar
field by applying a combinatorial reduction to the input data, and al-
gorithmically analysing the resultant graph. Since the scission prob-
lem involves a multifield (i.e. multiple scalar fields) instead, we must
therefore turn our attention to existing multifield visualization methods
and in particular the state of the art in multifield topological analysis.

4 MULTIFIELD VISUALIZATION

Compared to a scalar field, a multifield can be thought of as a collec-
tion of scalar fields with a shared domain or as a generalisation of a
scalar field to a multi-dimensional range: f : Rn → Rm. And, while Rn

is usually taken to be Euclidean space, both Rm and Rn may in general
be continous parameter spaces. For example, a record of temperature,
pressure, and humidity over the surface of the Earth defines a function
f : R2 → R3, while a record of heat and gaseous concentration in a
volumetric simulation of a plasma defines a function f : R3 → R2. We
will consider each of the samples in the data domain individually to
be scalar functions, i.e. we do not address the case where observations
explicitly include vector or tensor components.

We can construct a small running example by combining the scalar
field from Figure 2 with a second scalar field on the same domain in
Figure 2. If we combine the two to construct a function f : R2 → R2,

we instantly run into the major problem with multifield visualization:
how to construct separate visual encodings for each field. Figure 3
illustrates this problem, with a heat map based on the sum of the two
fields. Broadly speaking, multifield visualization is in its infancy, with
methods that either reduce the multifield to a scalar field or map each
element of the multifield to different visual channels.

5 MULTIFIELD TOPOLOGICAL ANALYSIS

As we have seen, successful tools have been developed for scalar topo-
logical analysis. It has been an open question, how to extend these
tools to multifields, either by treating the properties as separate scalar
fields, or by analysing the entire multifield at once. Moreover, re-
cent work [13] has demonstrated that, for many purposes, quantized
contours are a more appropriate form of analysis for the sampled and
meshed data typical of scientific and engineering simulations. We
therefore consider these three sets of research before proceeding.

Multiple Scalar Analysis: One approach has been to analyse each
scalar field separately (e.g. in contour trees), then overlap the cor-
responding features to determine which features are simultaneously
represented in two fields [28]. Extending this to more than two fields,
however, results in defining a graph of relationships between features
in the scalar fields, then searching for cliques representing large over-
lapping regions [27]. However, this approach only identifies features
that are independently visible in each property.

Jacobi Sets: A second approach has been to generalise scalar topol-
ogy to higher dimensions. A first step here was the introduction of
Jacobi sets [14], which analyse the behaviour of critical points of one
property on contours of another, but do not divide the domain of the
function into regions of full dimension that identify features in the
data. More recently, Reeb graphs were extended to Reeb spaces [15]
for multifields, but efficient practical algorithms have been lacking, in
part due to the complexity of the Reeb spaces.
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Fig. 3. Joint Contour Net for the small example. Left, the slabs af-
ter merging and the Joint Contour Net shown dual to the slabs. Right,
range-space placement: isovalues are mapped to (x,y) as in the contour
tree(Figure 2): where more than one node has a given isovalue, these
are stacked perpendicular to the plane of the page (shown in colour).

Joint Contour Nets: Joint Contour Nets (JCN)s [9, 10] quantize
the data domain into slabs in order to approximate Reeb spaces. Cru-
cially, if the slabs for individual values are intersected, the result is
still a slab of full dimension and with an easily defined neighbour-
hood. Figure 3 illustrates this quantisation: in this figure, the dotted
lines indicate slab boundaries, where each slab has the property that all
function values quantise identically. Note that there are no degenerate
slabs, and that the dual graph of the slabs provides a combinatorial
reduction for topological analysis.

If the dual graph is built up over many cells of the mesh, slabs in ad-
jacent cells that have identical quantisations can be merged to reduce
the complexity of the graph: the resulting mesh is called the Joint Con-
tour Net, which can be thought of as a computational approximation
(or tessellation) of the Reeb space of the multifield.

If we now look back at Figure 2, we can see that the Joint Contour
Net for each individual property is simply the contour tree for that
property, while for multifields, the Joint Contour Net captures all of the



topological relationships between properties, rather than the restricted
information captured by Multiple Scalar Analysis or Jacobi Sets.

Given that the Joint Contour Net computation is explicitly based on
quantizing the isovalues in the range of the function, we can vary the
level of quantization as a crude method of simplifying the data and/or
reducing the computational cost. For example, in Figure 2, the contour
tree in the upper row can be computed correctly with slabs of size 2
rather than 1, while the contour tree in the lower row can be computed
correctly with slabs of size 8. Similarly, in Figure 3, the key features
of the Joint Contour Net show up with slabs of size 2.

6 IMPLEMENTATION

This section describes the architecture of the system used to carry ap-
ply multifield to the two fission datasets, and the techniques used for
representing the resulting Joint Contour Nets.

6.1 Visualization Framework

A visualization pipeline was implemented in the Visualization Toolkit
(VTK) [29], taking advantage of VTK’s integrated support for both
scivis techniques and information visualization. Version 5.8 of the
toolkit was used, augmented by a small number of bespoke filters:

• A filter that extracts the JCN with the algorithm described in
[9, 10]. This takes a simplicial mesh as input, and produces two
outputs, (i) a graph dataset encoding the topological structure of
the network, and (ii) a set of 3D polyhedra (or 2D polygons)
stored as an unstructured grid, representing the slabs.

• A filter for converting the unstructured polyhedral cells into
polygonal data that can be rendered.

• A filter for generating viewpoint-aligned (“billboard”) glyphs
that show, pointwise, the value of each component of a multi-
scalar field. This filter is used in displaying the JCN, and is dis-
cussed in detail later in this section.

The JCN filter used in this paper was implemented as a testbed for
multifield topology, and has not been optimized for performance. For
example, it explicitly generates all of the isoslabs. While this capa-
bility was useful in the work reported here in relating the topological
abstractions to the underlying physics, it is a significant performance
bottleneck that will be addressed in subsequent work.

6.2 Drawing Joint Contour Nets

Trees and other networks from topological analysis are non-trivial for
graph drawing. The (apparently) simple case of the contour tree is
complicated as (a) the structure is an unrooted tree, and (b) in draw-
ing the tree, there are often conflicting aesthetics – e.g. vertical posi-
tioning in 2D of nodes according to the isovalue of the corresponding
contours, and horizontal positioning to reflect the branch hierarchy.

Two approaches to visualizing topological structure are (i) position-
ing nodes within the underlying manifold, or (ii) positioning the struc-
ture in a separate space (typically 2D or 3D euclidean space). Both
approaches are illustrated in [24], which describes a layout for con-
tour trees in 3D space inspired by orrerys. Layout in 2D space is more
difficult; For layout in 2D [20] report an algorithm that uses heuris-
tic search to reduce penalties arising from conflicting layout criteria.
Neither of these approaches can be applied to the JCN, as both rely on
structural properties of trees.

Absent a layout technique specialised to the structure of JCNs, we
have identified three generic methods that provide complementary in-
sights into their structure. Given a multifield function f : Rn → Rm:

1. Domain-space placement positions each node at the centre of
the slab in Rn to which it corresponds: an example of this can
be seen in Figure 3. For n ≤ 3, the resulting layout can be vi-
sualized directly; for n > 3 some form of dimensional scaling
will be required. Although simple to compute a node position
while building the JCN, in our experience it is difficult to dis-
cern features via this layout, and in particular difficult to identify
combinatorial events within a sequence of JCNs.

2. Range-space placement positions nodes at the point in Rm de-
fined by the threshold of the corresponding slab. This generalises
the contour-tree drawing convention where CT node isovalue is
mapped to one axis of the drawing space, and can be seen as a
form of scatterplot, where samples in the data domain are con-
nected by edges based on adjacency in the spatial domain.

However, where two slabs have the same isovalue, the corre-
sponding nodes will be co-located.

3. Force-directed placement: given the construction of the JCN
from adjacent slabs, we expect these networks to have a mesh-
like structure. Prior work [19] has shown that force-directed
layouts can be effective for such graphs, and these algorithms
avoid the problem of co-located vertices. Although there are is-
sues of scalability for larger graphs, for the datasets used in this
study force-directed placement was found to be practical.

Having placed the nodes, the next challenge is to relate nodes to
the m-tuple of values for the corresponding slab. Our solution was a
multi-variate glyph similar to pie glyphs [34], but adapted for multi-
field scalar data. Each glyph consists of a circle subdivided into m
equal regions, each of which is then assigned a colour by mapping the
corresponding component through a colour table.

The remaining difficulty was to relate nodes in the JCN to slabs
in visualizations of the spatial domain. For analysis of DFT data,
we do not need to make exact matches; our concern rather was
to correlate features in the topological structure with regions of the
data. As an expedient approach, we used the fact that the surfaces
were subject to interpolation shading. For the surface of a slab de-
fined by (v1,v2, . . . ,vm), we randomly assign one of the scalar values
{v1,v2, . . . ,vm} to each vertex, and then pass the resulting single scalar
field through a colour map. We make no claims that this is a percep-
tually good approach for multifield visualization in general, but for
the specific task of identifying the scission point, it provided adequate
support for relating the topological and spatial displays.

7 FERMIUM DATASET

Using the fermium-258 dataset with well defined fission pathways
[32], the primary aim of the first study was calibration: whether the
visualization tools reveal behaviour known a priori by the physicists
to be present, allowing the visualization members of the team to tune
visual representation, and simplifying the task of understanding how
the structure of the JCN relates to underlying physical phenomena.

Three datasets, representing different trajectories through the en-
ergy landscape of the fermium nucleus, were provided by the physi-
cists on the team for analysis. These were:

sCF : symmetric compact fission, representing the “simplest” form
of fission, where the fermium nucleus splits fairly abruptly into
two approximately equal nuclei, and

sEF : symmetric elongated fission, where the fermium nucleus elon-
gates symmetrically, and

aEF : asymmetric elongated fission, where the fermium nucleus elon-
gates asymmetrically, then a small group of nucleons breaks off
to form a new nucleus.

Each dataset consisted of a trajectory in the higher-order parameter
space defined by density functional theory, shown in Figure 4. As can
be seen in this figure, the trajectory itself does not give a clear indica-
tion of whether or where scission occurs. Moreover, the conventional
approach to detecting scission relies on computing overall energy for
the system, and looking for evidence of a cusp at which scission oc-
curs, as show in Figure 4. For example, while there is a clear jump
in energy for aEF, the most that can be said for sCF is that there is a
change in slope, and it is not clear exactly when scission occurs. Sim-
ilarly, for sEF, there is a gradual decline in energy, but whether this
corresponds to scission cannot be determined from this plot.
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For each of 56 sites along each of these trajectories, three scalar
fields were sampled on a regular 19 × 19 × 19 grid represented the
positive, negative, and total field strength within the fermium nucleus
as predicted by the model. Data for each field was provided in “raw”
format: 8-bit unsigned integers. The three fields used in this and the
subsequent plutonium study are:

p : spatial density of protons in the nucleus;

n : spatial density of neutrons;

t : spatial density of nucleons (protons and neutrons); ρt(x,y,z) =
ρn(x,y,z)+ρp(x,y,z)

Of these, the sCF trajectory was analysed first. Figure 5 shows three
snapshots from the initial analysis, at two levels of granularity.

Several things were immediately visible: the ‘shell-like’ arrange-
ment of the slabs within the physical space, and the recurring star-like
‘motifs’ within the network are visible across all JCN images. Inter-
preting the shell-like structure in the 3D model is straightforward: field
densities are highest at the centre of the dataset, and fall off towards
the edge, taking the minimum value at the eight corner points. This
interpretation is consistent with contour trees generated from the p/n
fields individually, which display eight ‘strands’. With respect to the
star-like motifs, we noted the following:

1. The centre of the star corresponded to two high-degree nodes,
most of whose neighbours were the low-degree nodes making
up the remainder (‘fringe’) of the star.

2. Scaling glyphs according to slab triangle count showed that star
centers corresponded to ‘large’ slabs, and fringes to small slabs.

Given the shell-like structure resulting from quantisation of the p/n
fields, we hypothesised that these were the result of interference-like
effects. Where a p-shell and an n-shell boundary were in close proxim-
ity, overlaps between the fields resulted in small regions where one or
both of the field values crossed into the next slab interval; this structure
is shown in Figure 6 (left). This was confirmed by taking a 2D slice
through the data and colouring the field by slab-id. Figure 6(right)
shows small slabs lying at the boundary between larger slabs (the
degree-2 fringe nodes; the degree-1 nodes in the JCN ‘fringe’ are slabs
that are fully contained within another).

With this understanding of the link between the JCN and underly-
ing data, Figure 5 revealed further insight. The JCN images at sites
1 and 20 are suggestive of one chain of ‘shells’ with embedded frag-
ments; the JCN in the third image however has a bifurcated structure.

a

b

x

y

a,x

b,y

a,y

b,x

Fig. 6. Interpreting star-like motifs: (left) schematic of slab-edge bound-
aries, (right) 2D slice through dataset, coloured by slab identifier. Here
a & b are the values of the first field defining its slab boundaries, while x

& y are slab boundary values for the second field.

The colour mapping showed that the two ‘ends’ of the bifurcation cor-
responded to shells within the centre of the dataset, and inspection of
these suggested the formation of two separate inner structure. Thus,
the latter image corresponded to a point beyond scission.

To locate the scission point, we used scripts to generate MPEG
video and/or JPEG image sets at each site along the given trajectory.
Review of these outputs identified a significant topological shift at site
26: see Figure 7. This was proposed as the scission point, and subse-
quently confirmed by the physicists on the team. Notably, the scission
is visible in the JCN on the trajectory before it shows up in the energy
plot of Figure 4: again, the physicists confirmed that this was correct.

Fig. 7. Scission point in the sCF dataset. The tail of the dataset (site
25, left) has split into two clearly-defined strands in site 26 (right, in the
arrowed box).



Fig. 5. JCN analysis of the sCF parameter trajectory. Top row at slab width 16, bottom row at slab width 8. Columns correspond to sites 1, 20 and
38 along the trajectory.

After seeing that the JCN worked for sCF, the physicists on the team
provided two additional datasets (sEF and aEF). Again, the visualiza-
tion members of the team were asked to identify the scission point.

In the aEF (Figure 8) trajectory, the JCN showed a clear bifurcation
between sites 46 and 47, though with a precursor change between sites
44 and 45. The scission point was subsequently confirmed against the
known model (see Figure 4).

In the sEF, initial analysis of the JCN at slab width 8 failed to iden-
tify a definite scission point, although changes in the ‘backbone’ of
the structure suggested that fragments were organizing into discernible
strands that could be precursors to fission. However, visual inspection
at finer granularity (smaller slab width) still failed to identify any clear
fission point, and this was reported to the physicists.

This was actually the correct conclusion to draw from the data: the
physicists had deliberately posed sEF to see if the JCN would return
a false positive. In fact, the sEF trajectory provided does not include
a scission point, and the ‘failure’ to identify such a point via the JCN
added further confidence in the utility of the multifield analysis.

8 PLUTONIUM DATASET

The spontaneous fission of fermium nuclei confirmed the validity of
the JCN to identify scission. We now consider plutonium (Pu) fission:
abundant in the spent nuclear fuel generated by nuclear reactors, its
properties have been the focus of numerous experiments. Physicists’
understanding of its fission process is thus far more detailed than in the
more exotic fermium superheavy element. Figure 8 shows the total
energy of the nucleus as a function of its elongation Q20 from the
ground-state (the first minimum, near Q20 = 30) to the scission point
(‘near’ Q20 = 345, where energy drops suddenly) and beyond. For
each point along the Q20 axis, the energy is taken as the minimum
over three other dimensions in DFT, namely Q22, Q30 and Q40.

However, previous studies of fission of plutonium have shown that
a four-dimensional collective space may not be enough in accurately
reproducing the experimental data [36]. In the lower panel of the fig-
ure an extra degree of freedom, QN , is therefore considered. This
additional collective variable is the number of particles in the neck,
i.e. the integral over r,ϕ of the total density ρt(r,ϕ ,z) at the point
z where the density is the lowest. What the lower panel of fig-
ure 8 shows is the energy at Q20 = 345 b as a function of QN , i.e.,
MinQ22,Q30,Q40

E(QN ;Q20 = 345). This value of Q20 is chosen just be-
fore the scission point as identified from the upper panel of the figure.
The important consequence of adding the QN degree of freedom is that
what was a discontinuity in a 4-d space (transition from Q20 = 345 to
Q20 = 346 in the upper panel yields a 17 MeV energy loss) becomes
a continuous path in a 5-d space, as evidenced in the lower panel of
the figure. The only criterion that physicists could use to identify scis-
sion unambiguously, namely the discontinuity in the energy, has disap-

Fig. 8. Scission point in the aEF dataset. Starting from site 44 (top left),
site 45 (top right) shows a break in local symmetry, persisting in site 46
(bottom right). Site 47 shows wholesale change, with the central ‘spine’
of the topology split into two branches.

100 200 300 400
Q20 [b]

-30

-25

-20

-15

-10

 -5

  0

  5

 10

 15

D
e
fo
rm

a
ti
o
n
 E
n
e
rg
y
 [
M
e
V
]

0.01.02.03.04.0
Number of particles in the neck QN

-20

-15

-10

 -5

  0

D
e
fo
rm

a
ti
o
n
 E
n
e
rg
y
 [
M
e
V
]

Fig. 9. Total energy of isotope 240Pu as a function of quadrupole moment
Q20 (left) and density of particles in the neck QN (right).

peared! Yet, study of the simulation shows that at QN ≥ 4, the nucleus
is whole, and at QN ≤ 0.1, it has split in two fragments.

So, because models of Pu fission are more comprehensive, physi-
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Fig. 10. Scission point in QN field. Left figure is post-scission (QN = 0.4), right figure is pre-scission (QN = 0.5)

cists face greater difficulty and uncertainty in interpreting the model
and relating the higher-dimensional energy landscape to combinato-
rial changes in the underlying nuclear system. The goal of the second
study, therefore, was (i) to use multifield analysis to locate the scis-
sion point along both the Q20 and QN axes of the Pu model, and (ii)
to investigate whether the JCN analysis could shed light on the rela-
tionship between these fields and the structural changes within the Pu
nucleus, e.g. identifying subtle differences in the behavior of neutron
and proton density fields.

The initial analysis was performed on 669 sites sampled along the
Q20 axis. As for fermium, each site along the trajectory corresponded
to a 3-field (p, n, and t) volumetric dataset, in this case with dimen-
sionality 40× 40× 66. This data came from a different source to the
fermium, and underwent pre-processing including negative log trans-
formation, as there were concerns that the gradient in regions of the
data would be problematic for JCN analysis. A consequence of the
transformation used was that the sense of field density was changed,
with the higher density regions mapping to lower values in the 8-bit
fields. This inversion was eliminated from processing of later sam-
ples, but explains why the sense of the density field is flipped between
Figure 8 and other images.

Analysis of these datasets was carried out with increasingly fine
slab granularity. An initial sweep at slab width 32 failed to identify any
combinatorial event, but sampling the datasets at resolution 16 showed
a bifurcation appearing between sites 650 and 740; further analysis
down to slab width 8 confirmed that the split appeared between sites
690 and 692 (Q20=345). This transition is shown in Figure .

For QN , datasets were available for 45 sites along the trajectory in
the second panel of Figure 8. A sweep through the data at resolution
8 indicated clearly a discrete point where the multifields topology un-
derwent a significant change. Figure 10 shows the two sites (QN=0.4
and QN=0.5) on either side of the transition.

This putative scission point differs somewhat from that expected by
the physicists (for example, scission was assumed to have occured at
QN ≤ 1.0 in [36]), but the situation is in fact more complicated. Fig-
ure 11 shows three further points along the QN trajectory, correspond-
ing to QN = 1.5, 2.5, and 3.5. Each JCN has a branching structure: as
the sequence progresses, the ‘neck’ becomes progressively larger. The
event in Figure 10 is thus only the point where the neck disappears,
leaving the density fields for two fragments enclosed only by the sim-
ulation bounds. This marks one end of a scission region, which starts
when the bifurcation first appears. Although not sited along the given
QN trajectory, such an event has already been identified, in Figure 8.
Thus, instead of simply identifying one combinatorial event represent-
ing scission, the JCN analysis has highlighted that scission itself is a
process occupying a region within the energy space.

The final point addressed is the relative utility of the JCN compared
to contour trees of individual fields. Figure 12 shows contour trees
for p and n fields and slab resolutions 16 and 8 for the sites at QN =
0.4 and 0.5 (either side of the end of the scission region). Although
taken individually the contour trees are simpler, the different proper-
ties of protons and neutrons mean that neither field on its provides an
unambiguous signal that the scission region has ended.

In fact, the ‘quasi tree’-like structure of the fission JCNs (compared
to the more general graph of the small example) reflects a feature of
the underlying physics: the P and N fields are defined iteratively, and

Fig. 11. Elongation of the neck region in the Joint Contour Net.

a scatterplot of the two fields show that the values occupy a compara-
tively narrow band within the data domain.

9 CONCLUSIONS

We set out with the intention to demonstrate the utility of JCN analy-
sis in multifield data, and to provide visualization support for nuclear
physicists in determining scission points in high-dimensional parame-
ter spaces. In the outcome, we succeeded in showing that:

1. The JCN is an effective tool for studying nuclear fission param-
eter spaces,

2. The JCN gives a more precise answer than hitherto available to
the fundamental question of when scission occurs, and in fact
shows that scission does not necessarily occur at points of inflec-
tion in the energy plots,

3. Moreover, the JCN provides evidence that scission is best viewed
as a region rather than a discrete point,

4. While the contour tree also answers this question, the JCN does
so more reliably, and at lower levels of quantisation,

5. Star-like structures can be expected to occur in the JCN, but pri-
marily represent aliasing at the boundary of quantization inter-
vals, and can therefore be disregarded,



Fig. 12. Contour trees for the p (left column) and n (right column) fields
around the Pu scission point. Top row: QN = 0.4; Bottom row: QN = 0.5.

In future, we intend to continue by considering forms of simpli-
fication and acceleration for JCN computation, improved algorithms
for layout and visualization of the JCN, and exploring further uses of
the JCN in nuclear physics. In particular, since the simulations come
from wave-functions, particles may be localized in both fragments due
to many-body quantum entanglement [37]. We believe that it may be
possible to apply multifield techniques directly to the wave functions
rather than to the total density of nucleons, and thus provide a criterion
as to their degree of localization (left, right, everywhere).
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